

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Statistics (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023
Question Paper Log Number 74327
Publications Code WST02_01_ rms_20240118
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - o the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- · dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme	Marks	
1 (a) (i)	<i>X</i> ∼ B(14,0.2)		
	$[P(X=2)=]^{14}C_2 \times 0.2^2 \times 0.8^{12}$			
		= 0.2501 awrt 0.2501	A1	
(ii)	<i>X</i> ∼ B(25,0.2)		
	P(X > 1)	3) = $1 - P(X \le 3) = 1 - 0.2340$ or $1 - (0.0038 + 0.0236 + 0.0708 + 0.1358)$	M1	
		= 0.7660 awrt 0.766	A1	
			(4)	
(b)(i)	[np = 6]	$\Rightarrow]n = \frac{6}{0.2}$	M1	
		= 30	A1	
			(2)	
(ii)	$Y \sim B(x)$	$(n, 0.2)$ we require $P(Y \ge 1) > 0.95$		
	1-P(Y	$= 0) > 0.95 \Rightarrow P(Y = 0) < 0.05$	M1	
	$[{}^{n}C_{0} \times 0.2^{0}] \times 0.8^{n} < 0.05$			
	$0.8^{14} =$	$0.04398[<0.05] n > \frac{\ln 0.05}{\ln 0.8} \Rightarrow n > 13.425$	dM1	
		n = 14	A1	
			(4)	
		Notes	Total 10	
(a) (i)	M1	For writing or using $^{14}C_2 \times 0.2^2 \times 0.8^{12}$ (Allow 91 for $^{14}C_2$)		
	A1	awrt 0.2501 NB 0.2501 with no working scores M1A1		
(ii)	M1	For writing or using $1 - P(X \le 3)$		
	A1	awrt 0.766 NB awrt 0.766 with no working scores M1A1		
(b)(i)	M1	For use of $np = 6$ e.g $0.2n = 6$ (Allow \geqslant)		
	A1	Cao		
(ii)	M1	For writing or using $P(Y \ge 1) = 1 - P(Y = 0)$ (Allow $P(Y \ge 1) = 1 - P(Y \le 0)$)		
	M1	For $0.8^n < 0.05$ oe (Allow = or \leq)		
	dM1 Dependant on previous M1 For substitution of n (allow $0.8^{13} = 0.05497$) or rearranging to $n >$ (Allow = or \geqslant) If using logs allow any base e.g. $n > \log_{0.8} 0.05$			
	A1	Cao		

Question				
Number			Scheme	Marks
2 (a)	[Mode =] 4		B1
				(1)
(b)	$\int a \int_0^4 x^3 dx$	$x = \frac{1}{2} \Rightarrow \left] a \left[\frac{x^4}{4} \right]_0^4 = \frac{1}{2}$ $\Rightarrow a = \frac{1}{128} *$		M1
	$64a = \frac{1}{2}$	$\Rightarrow a = \frac{1}{128} *$		A1*
				(2)
(c)	0.5	$0.5 \qquad \frac{1}{2} \times \frac{1}{2} \times (d - \frac{1}{2})$	4) = $\frac{1}{2}$ or $\frac{1}{2} \times \frac{1}{2} \times (d-4) + \int_0^4 ax^3 dx = 1$	M1
	<i>d</i> = 6			A1 (2)
(d)	$b = \frac{-\frac{1}{2}}{6'-4}$	$\frac{1}{4}\left[=-\frac{1}{4}\right]$	4b+c=0.5 oe $10b+2c=0.5$ oe or '6' $b+c=0$ oe	M1
	$0 = -\frac{1}{4}$	$\times'6' + c$ or $\frac{1}{2} = ' - \frac{1}{4}' \times 4 + c$	10b + 2c = 0.5 oe or '6' $b + c = 0$ oe	M1
		$b = -\frac{1}{4}$ and	$ d c = \frac{3}{2} $	A1
				(3)
			Notes	Total 8
(a)	B1	Cao		
(b)	M1		odf and setting = 0.5 Ignore limits	. 1.
	A1*	Answer is given so a correct solution of correct working from the M ma	tion must be seen with no errors. There must be at leasers to the final answer	ast one line
		Mark parts c and d together	ark to the fillal allswel.	
(c)	M1	For setting the area of the triangle	e = 0.5	
. ,	A1	Cao		
(d)	M1	A correct method for finding <i>b</i> ft or $4b+c=0.5$ oe (this may be see	their d value een any part of this question) Allow $4b + c = 64a$	
	A correct method for finding c ft their b and d value or $10b + 2c = 0.5$ oe or ' d '× $b + c = 0$ oe (these may be seen any part of this question) Allow $db + c = 0$			n) Allow
	A1	For both b and c correct NB $b = -$	0.25 oe and $c = 1.5$ oe will score $3/3$	

Question		Scheme	Marks
Number 3 (a)(i)	3 + [0] +	29 = 32*	B1*
(ii)	3 + 10 + 15 + 15 + 15 + 15 + 15 + 15 + 15		B1*
(11)	3 1 13 1	<u> </u>	(2)
(b)	$f(t) = \left\{ \begin{array}{c} \\ \end{array} \right.$	$ \frac{1}{15} 32 \leqslant t \leqslant 47 $ 0 otherwise	M1 A1
			(2)
(c) (i)	[E(T) =]	39.5 oe	B1
(ii)	$[Var(T) =] \frac{(47-32)^2}{12}$		
	$\frac{75}{4} = 18.$	75	A1
			(3)
(d)	(40 – 32	$)\times\frac{1}{15}$	M1
			A1
			(2)
		Notes	Total 9
(a)(i)	B1*	For 3 + [0] + 29	
(ii)	B1*	For 3 + 15 + 29 Allow 32 + 15	
(b)	M1	For $f(t) = \frac{1}{15}$ $32 \le t \le 47$ Allow use of < instead of one/both \le signs. Allow the use of any letter for $f(t)$ and t (Condone inconsistent use of letters) but we follow the use of any letter for $f(t)$ and an inequality	must have
	A1	Fully correct pdf $f(t) = \begin{cases} \frac{1}{15} & 32 \le t \le 42 \\ 0 & \text{otherwise} \end{cases}$ Must be $f(t)$ and t . Condone $f(T)$ and T Allow use of $<$ instead of one/both \le signs Allow equivalent for the 0 otherwise.	
(c)(i)	B1	For 39.5 oe	
(ii)	M1	For use of $Var(T) = \frac{(\beta - \alpha)^2}{12}$	
	A1	For 18.75 oe	
(d)	M1	For use of $(40-\alpha) \times \frac{1}{\beta-\alpha}$	
	A1	For $\frac{8}{15}$ oe Allow awrt 0.533	

Question Number			Sch	neme		Marks
4 (a)	0.2×£10-	$+0.3 \times £12 + 0.3$	5×£15			M1
	=[£]13.	10				A1
	F., J.					(2)
	10 10 1	0	12 12 12	15 15 15		(2)
			12 12 12 12 12 15 (×3)			
(b)		, ,	10 12 12 (×3)	• • • • • • • • • • • • • • • • • • • •		B1 B1
	10 10 1		10 12 12 (×3)	10 13 13 (×3)		
	10 12 1	3 (>0)				(2)
(c)	P(10) = 0).2	P(12) = 0.3	P(15) = 0.5		B1
	` '	can be 10, 12		2 (20) 010		B1
			$\frac{61.13}{2^2 \times 0.3 \times 3 + 0.2^2 \times 0.5}$	$\frac{1}{\sqrt{2}}$ or $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$	9202	
	,				.8 ×0.2	M1
	P(M=1)	$2) = 0.3^3 + 0.3$	$3^2 \times 0.5 \times 3 + 0.3^2 \times 0.2 $	$\times 3 + 0.2 \times 0.3 \times 0.5 \times 6$		M1
	P(M=15	$5) = 0.5^3 + 0.5$	$^2 \times 0.3 \times 3 + 0.5^2 \times 0.2 \times$	3 or $1-0.5^3-3\times0.5^2$	$^2 \times 0.5$	M1
		M	10	12	15	
	P(M=m)		$\frac{13}{125} = 0.104$	$\frac{99}{250} = 0.396$	$\frac{1}{2} = 0.5$	A1
						(6)
			N	otes		Total 10
(a)	M1	For 0.2×10+	$-0.3 \times 12 + 0.5 \times 15$ May be		nswer	1011110
(4)	A1	Cao Allow	•	o implied by a correct a		
(b)	B1		st 5 possible combinati	ons. Ignore repeats. Ma	ny be seen in part c	
(5)	B1		ossible combinations. Ig		· · · · · · · · · · · · · · · · · · ·	
(c)	B1			· · · · · · · · · · · · · · · · · · ·	ied by a correct probabilit	У
	B1	All 3 media	ns and no extras	-		_
	M1	A correct m	ethod for one of the pro	babilities (May be imp	lied by a correct probabili	ty)
	M1				lied by 2 correct probabil	
	M1		nethod for all three probabilities (May be implied by 3 correct probabilities bilities that add to 1			es)
	A1			abilities must be attach	ed to the correct median	

Question Number		Scheme	Marks
5 (a)	Compl	aints received are independent or occurring at a constant rate or singly	B1
			(1)
(b)(i)	L \	$(3 X \sim Po(6)) =]0.0620$ awrt 0.062	B1
(ii)	$\lceil P(X \ge$	(0.554) = $1 - P(X \le 5)$ or $1 - 0.4457 = 0.5543$ awrt 0.554	M1A1
			(3)
(c)	$H_0:\lambda$	$=6$ $H_1: \lambda > 6$	B1
	$P(X \geqslant$	12) = 1 - P($X \le 11$) = [1 - 0.9799] or $P(X \ge 11) = 1 - P(X \le 10) = [1 - 0.9574]$	M1
		$= 0.0201$ or $CR \ge 11$	A1
	Reject	H ₀ /In the CR/Significant	M1
		s sufficient evidence to suggest that the mean number of complaints received ter than 6 per week	A1ft
			(5)
(d)	$H_0:\lambda$	$=6$ $H_1:\lambda<6$	B1
	6 week	period is $Po(36) \Rightarrow N(36, 36)$	B1
		$(26) \approx P(Y < 26.5) = P(Z < \frac{26.5 - 36}{6})$ or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$	M1 M1
	P(Z < C)	(x - 1.583) = 0.0571(Calculator 0.05667) or $x < 25.63awrt 0.057 awrt 25.6$	A1
	Do not	reject H ₀ /Not in the CR/Not significant	M1
		s insufficient evidence to suggest that the mean number of complaints	
		d after the changes made is less than 6 per week	A1ft
			(7)
		Notes	Total 16
(a)	B1	A correct assumption. Must be in context so need 'complaints' and then independent/ra constant rate or singly	andom or
(b)(i)	B1	awrt 0.062	
(ii)	M1	For writing or using 1–P($X \le 5$) May be implied by awrt 0.554	
	A1	awrt 0.554	
(c)	B1	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ	
	M1	For writing or using $1-P(X \le 11)$ or $1-P(X \le 10)$	
	A1	For 0.0201 or CR ≥ 11	
_	M1 A1ft	A correct statement – no context needed but do not allow contradicting non contextual Correct conclusion in context with the words highlighted in bold	comments
(1)		Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of	36 rather
(d)	B1	than 6	
	B1	For writing or using N(36, 36)	1' '
	M1	For standardising using 25.5/26/26.5, their mean and their standard deviation or standard using x –0.5/ x / x + 0.5, their mean and their standard deviation and setting equal to –1.6	•
	M1	For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$	11 /
	A1	awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0)	
		or CR < awrt 25.6 (Allow ≼)	
	M1	A correct statement – no context needed but do not allow contradicting non contextual Correct conclusion in context with the words in bold (Allow The mean number of con	
	A1ft	stayed the same/not changed oe)	apianus nas

Question Number		Scheme	Marks
6(a)	P(Y	$<\frac{1}{4}k \mid Y < k$ = $\frac{F\left(\frac{1}{4}k\right)}{F(k)} = \frac{\frac{1}{21}\left(\frac{k}{4}\right)^2}{\frac{1}{21}k^2} = \frac{1}{16}$ oe	M1 A1
(b)	$\frac{1}{21}k^2$	$= -\frac{1}{15}k^2 + \frac{4}{5}k - \frac{7}{5} \qquad \frac{d}{dy}\left(\frac{1}{21}y^2\right) = \frac{2}{21}y \text{ or } \frac{d}{dy}\left(\frac{2}{15}\left(6y - \frac{y^2}{2}\right) - \frac{7}{5}\right) = \frac{2}{15}(6 - y)$	(2) M1
	$\Rightarrow 4k$	$\frac{d}{dy}\left(\frac{1}{21}y^2\right) = \frac{2}{21}y & \frac{d}{dy}\left(\frac{2}{15}\left(6y - \frac{y^2}{2}\right) - \frac{7}{5}\right) = \frac{2}{15}(6 - y)$	A1
	\Rightarrow (2	$(k-7)^2 = 0$ $\frac{2}{21}k = \frac{2}{15}(6-k)$	M1
		$k = \frac{7}{2}$ oe	A1
			(4)
(c)	f(y) =	$ \begin{cases} \frac{2}{21}y & 0 \leq y \leq 3.5 \\ \frac{2}{15}(6-y) & 3.5 \leq y \leq 6 \\ 0 & \text{[otherwise]} \end{cases} $	M1 M1
	E(Y) =	$= \frac{2}{21} \int_0^{3.5} y^2 dy + \frac{2}{15} \int_{3.5}^6 (6y - y^2) dy \Rightarrow \frac{2}{21} \left[\frac{y^3}{3} \right]_0^{3.5} + \frac{2}{15} \left[3y^2 - \frac{y^3}{3} \right]_{3.5}^6$	M1 M1
	$\frac{2}{21} \left(\frac{34}{24} \right)$	$\left(\frac{13}{4}\right) + \frac{2}{15}\left(\frac{325}{24}\right) = \frac{19}{6} = 3.166$ awrt 3.17	dM1 dA1
			(6)
			Total 12
(a)	M1	For a correct probability statement or a correct ratio of probabilities	
	A1	For $=\frac{1}{16}$ oe or 0.0625	
(b)	M1	For setting the two lines of the cdf = to each other or $\frac{2}{21}y$ or $\frac{2}{15}(6-y)$ (Implied by a correction)	rect 3TQ)
	A1	For a correct 3TQ or $\frac{2}{21}y$ and $\frac{2}{15}(6-y)$	
	M1	For solving their 3TQ. If the 3TQ is not correct, then a correct method must be shown or 2 lines of the pdf = to each other	setting their
	A1	k = 3.5 oe NB $k = 3.5$ with no incorrect working scores 4/4	
(c)	M1	Attempting to differentiate 1 of the functions. May be seen in part (b) or in an attempt to	
	M1	Attempting to differentiate both with one correct. May be seen in part (b) or in an attemption \mathbf{r}_{a}	t to find E(Y)
	M1	For writing or using $E(Y) = \int_0^{3.5} y f(y) dy + \int_{3.5}^6 y f(y) dy$ Ignore limits	
	M1	For attempting to integrate	1 ' 1' 1
	dM1	Dependent on previous M1. For substitution of limits, must be 0 or 6 and ft their 3.5. May by $\frac{49}{36}$ oe or $\frac{65}{36}$ oe or $\frac{19}{6}$ oe. If the integral is not correct, then we must see evidence of su	
	dA1	Dependent on previous M1. For $\frac{19}{6}$ or awrt 3.17	

Question Number		Scheme	Marks
7(a)	<u>97.5 –</u> σ	$\frac{\mu}{\sigma} = 1.25 \qquad \frac{85.5 - \mu}{\sigma} = -0.75$	M1 M1 M1 M1 M1
	$2\sigma = 12$	2	M1
	$\sigma = 6$	$\left[\mu = 90\right]$	dA1*
			(7)
(b)	np = 9	0 and $np(1-p) = 36$	M1
	1-p =	- 0.4	M1
	p = 0.0	6 and $n = 150$	A1
			(3)
		Notes	Total 10
		NB Condone use of np for μ and $\sqrt{np(1-p)}$ for σ	
(a)	M1	For standardising using 96.5/97/97.5 and = z value, where 1 < z < 1.5	
(a)	M1 M1	For standardising using 96.5/97/97.5 and = z value, where $1 < z < 1.5$ For standardising using 85.5/86/86.5 and = z value, where $-1 < z < -0.5$	
(a)		For standardising using $85.5/86/86.5$ and = z value, where $-1 < z < -0.5$ For use of a correct continuity correction in either equation	
(a)	M1 M1 M1	For standardising using $85.5/86/86.5$ and = z value, where $-1 < z < -0.5$ For use of a correct continuity correction in either equation For a correct z value used in either equation	
(a)	M1 M1	For standardising using $85.5/86/86.5$ and = z value, where $-1 < z < -0.5$ For use of a correct continuity correction in either equation For a correct z value used in either equation An attempt at both equations with one fully correct	
(a)	M1 M1 M1 M1	For standardising using $85.5/86/86.5$ and = z value, where $-1 < z < -0.5$ For use of a correct continuity correction in either equation For a correct z value used in either equation An attempt at both equations with one fully correct For solving simultaneously eliminating μ or σ As this is a show that question then	working must
(a)	M1 M1 M1 M1	For standardising using 85.5/86/86.5 and = z value, where $-1 < z < -0.5$ For use of a correct continuity correction in either equation For a correct z value used in either equation An attempt at both equations with one fully correct For solving simultaneously eliminating μ or σ As this is a show that question then be seen.	working must
(a)	M1 M1 M1 M1	For standardising using $85.5/86/86.5$ and $= z$ value, where $-1 < z < -0.5$ For use of a correct continuity correction in either equation For a correct z value used in either equation An attempt at both equations with one fully correct For solving simultaneously eliminating μ or σ As this is a show that question then be seen. Dependent on all previous M marks being awarded $\sigma = 6$ *	working must
(a) (b)	M1 M1 M1 M1	For standardising using 85.5/86/86.5 and = z value, where $-1 < z < -0.5$ For use of a correct continuity correction in either equation For a correct z value used in either equation An attempt at both equations with one fully correct For solving simultaneously eliminating μ or σ As this is a show that question then be seen.	working must
	M1 M1 M1 M1 M1 dA1	For standardising using $85.5/86/86.5$ and $= z$ value, where $-1 < z < -0.5$ For use of a correct continuity correction in either equation For a correct z value used in either equation An attempt at both equations with one fully correct For solving simultaneously eliminating μ or σ As this is a show that question then be seen. Dependent on all previous M marks being awarded $\sigma = 6$ *	working must